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AbstracL Equilibrium properties of electrons in double-heterojunction AIGaAsXiaAdAIGaAs 
structures are investigated thearetically. using a fully self-consistent numerical method. The 
m i t i o n  fmm single to bilayer electroo systems is discussed for structures with varying distance 
between interfaces as a function of the in-plane magnetic held strength. A phenomenon of 
separability of the energy dispersion curves in parts corresponding to electrons in either the first 
or the second layer is analysed in detail. The magnetic-field-induced variation in the effective 
distance between electron layers is compared to the constant layer separation in standard double- 
well structures. Because the barrier behveen interfaces is relatively small and soft, the van Hove 
singularities in the m density of states are expected to be more easily detectable thm in double- 
well system. The cyclotron mass. proponional to the densiCy of states and characterizing the 
electron motion in tilted magnetic fields, is calculated as a function of in-plane magnetic held. 
The separability of the energy spectra resulting in tilted cyclotron orbits is demonstrated on the 
basis of a classical picture of an electron moving in crossed electric and magnetic fields. 

1. Introduction 

The electronic structure of bilayer 2D electron systems in double quantum wells has become 
a focus of interest since their preparation has been achieved, and intensive theoretical and 
experimental investigation of the properties of these systems is now in progress. The main 
directions of recent research on these s t ruc tm subjected to magnetic fields were reviewed 
by Eisenstein [l]. Firstly, in a strong perpendicular magnetic field, the double-layer systems 
exhibit new quantum Hall states not present in a standard 2D gas because of an extra degree 
of freedom, the layer index. Secondly, in the in-plane magnetic fields, the tunnelling 
between two electron layers can be modified to such an extent that, at certain critical fields, 
the interlayer tunnelling is completely suppressed and electrons move exclusively in one 
of the wells. The field-induced decoupling of electron layers is accompanied by a number 
of new phenomena which can be studied by measuring both the parallel and perpendicular 
transport and the Shubnikov-de Haas effect. 

A typical double-well structure consists of a pair of narrow (s20 nm) wells separated 
by an undoped AlGaAs barrier of a similar thickness. Two Si-doping layers are usually 
located both below and above the wells and the Schottky gates are deposited on the tophack 
of the sample to control better the concentration of electrons in individual wells. Due to 
the tunnelling through the barrier the degeneracy of the energy specmm in the layer index 
is removed, the corresponding single levels split and the lowest bound states of individual 
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wells form a symmehic/antisymmetric pair. A small tunnelling probability through the 
hard-wall AlGaAs barrier implies a small level splitting and a weak coupling of electron 
layers. 

Traditionally, the gross features of the electronic structure of a standard double well are 
explained in terms of a simple model which assumes two identical very narrow wells at 
the distance d and a weak overlap of the localized states corresponding to first subbands 
of both wells. The interwell tunnelling is described in the tight-binding approximation by 
a single parameter determining a small bonding-antibonding energy gap. Then the band 
spectrum is given by the elementary nearly-free-electron model as presented in classical 
solid-state textbooks (see, e.g., [2]). The model predicts the anticrossing of two circular 
Fermi lines accompanied by the logarithmic van Hove singularity in the density of states 
which can be interpreted. in the ZD case, in terms of singular effective cyclotron mass. It 
was utilized to study the role of minigaps in Si by Ando [3] and Mathesson and Higgins [4] 
and successfully applied in the description of the interwell tunnelling (see [ 11 and references 
therein) and of the electronic smcture of double wells in tilted magnetic fields [5-71. 

In our theoretical study we shall consider another potentially bilayer system, the 
double-heterojunction quantum wells formed only by two selectively doped AIGaAdGaAs 
interfaces with no AlGaAs layer grown between them. Note that in this case an undoped 
structure would result in an exactly rectangular quantum well. In the doped structures, 
the transfer of electrons from Si donors into the GaAs leads to band bending in the GaAs 
by electrostatic forces and, consequently, to the formation of a soft built-in barrier of 
approximately parabolic shape inside the well. Wether the built-in barrier is strong enough 
to separate the quantum well into two independentlweakly coupled parts or the coupling is 
so strong that the system can be considered as a transient form between a single well and 
a double well depends on the well width and the amount of charge. For simplicity, only 
symmetrically doped wells will be considered. 

In charged wells, the shape of the barrier is given by the charge distribution. Therefore 
the electronic structure must be determined by the self-consistent solution of coupled 
Schrodinger and Poisson equations. A number of such calculations have been performed for 
the case of zero magnetic field-see, e.g., [SI and references therein. Effects of the in-plane 
magnetic field on both conduction and valence bands, resulting in a diamagnetic shift of 
the electron-hole recombination energy, were discussed by Oliveira et al [9], neglecting the 
exchange and correlation energies. Here the full self-consistent calculation will be employed 
to obtain the electron energy spectra and information about the charge redistribution due to 
the magnetic field. The electronic structure of double-heterojunction wells will be studied 
mainly from the point of view of the possible magnetic-field-induced splitting of a single- 
layer electron system to a bilayer one. 

L Smrfka and T Jungwirth 

2. Band-structure calculation 

The standard semi-empirical model, working quantitatively for the lowest conduction states 
of GaAdAIGaAs heterostructures, is used to solve the Schrodinger equation in the envelope 
function approximation. The envelope function is assumed to be built up from host quantum 
states belonging to a single parabolic band. The effect of the effective-mass mismatch is 
completely neglected and the envelope functions of GaAs and AlGaAs are smoothly matched 
at the interface. Due to the translational invariance in the layer plane the momentum 
operators px and py become good quantum numbers, px + hk, and py + hky. If we 
choose a vector potential A in the form A = ( B y z .  0, 0). the eigenvalue problem reduces 
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to solving the one-dimensional Schrodinger equation with the Hamiltonian 

(For a more detailed derivation, consistent with our notation, see, e.g., [IO] and references 
therein.) The centre zo of the the magnetic part of the effective potential energy is related to 
the wave vector component kx by zo = AkJmw, where w denotes the cyclotron frequency 
w = le lB, /m.  The confining potential energy of a well with the width d 

(2) 

is a sum of the step functions vb(Z) = vb0(-z - d/2)  + vb0(z - d/2),  corresponding 
to the conduction band discontinuities between AlGaAs and GaAs, and of a term V,,(z) 
describing the interaction of an electron with ions and the electronelectron interaction. 
This term should be calculated self-consistently and can be written as 

K o n f k )  = Vb(Z) + vs(Z) 

Vs(Z) = vH(z) f vxc(z). (3) 
The Hartree term VH is the solution to the Poisson equation 

and we use an expression calculated by Ruden and Dohler [ I l l  in a density-functional 
formalism for the exchangecorrelation term Vxc, 

V,, -0.61 1 - 4;r ( 3 y ) " 3  - 

The conduction band offset Vb and the dielectric constant E enter our calculations as input 
parameters. 

For modulation-doped GaAdAIGaAs heterostructures the total charge density e(z) in 
equation (4) can be split into parts corresponding to concentrations of electrons, Ne(z), their 
parent donors in AIGaAs, Nd+(z) ,  and ionized residual acceptors in GaAs. N;(z), 

e(z) = e [ N , ( z )  -N,+(z)+N;(z)] .  (6) 
We accept the usual approximation of constant impurity concentrations and assume donors 
and acceptors to be ionized within certain finite intervals: Nd+(z) = Nd for d / 2 +  w 4 IzI 4 
d/2  + w + ld ,  i.e. symmetrically with respect to the well of width d,  and N;(z) = N, for 
IzI < d/2, which means that all acceptors inside the well are ionized. Here w denotes the 
spacer thickness and la is the depletion length of donors which is determined in the course 
of the self-consistent procedure. 

3. Results and discussion 

In our calculation we consider four wells with widths d = 25, 40, SO and 60 nm, close to 
the dimensions of a typical double quantum well described above, The concentrations 
of localized charges are Nd = 2 x 10" cm-3 and Na = 1014 ~ m - ~ ,  the band offset 
v b  = 225 meV and the dielectric constant E = 12.9. The spacer thickness w = 60 nm 
yields electron systems with a concentration of electrons Ne m 3.2 x IO" cm-*. The 
self-consistent procedure was performed in two steps. Firstly, the electronic structure of 
wells was calculated in zero magnetic field, while in the second step the magnetic field 
dependence of subbands was obtained starting from intermediate zero-field results. 
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Figure 1. Band diagrams and energy le\'els of double-heterojunction wells in zero magnetic 
field. 

3.1. Zero-magnetic-field case 

It follows from the form of Hamiltonian (1) that. in the case of zero magnetic field, an 
electron motion in the z-direction is completely decoupled from the in-plane components. 
The energy spectrum consists of two quasi-continuous free-electron branches, the quadratic 
functions of the wave vector components k,, k,, and the energy levels corresponding to the 
bound states of a well. The positions of levels on the energy scale are presented in figure 1, 
together with the band diagrams resulting from the first step of the self-consistent procedure. 
The form of the barriers is approximately parabolic for all four wells; minor deviations from 
this shape may be observed for wider wells. The heights of barriers are very small when 
compared with hard walls of wells formed by the GaAsfAlGaAs interfaces. This indicates 
a stronger coupling between wells than in a standard double-well structure. 

All the systems have one occupied pair of symmetric/antisymmetric subbands, except 
the ZS nm wide well where only the subband belonging to the lowest bonding) state is 
occupied. Note that the origin of the energy scale in figure 1 is located at the Fermi energy 
EF of the electron system. The energy spectrum of the 60 nm system corresponds to almost 
independent quantum wells; both occupied levels lie below the top of the barrier and the 
splitting of energy levels due to the quantum tunnelling is small. The coupling of ZD electron 
layers increases smoothly with the decreasing well width and the energy spectrum of the 25 
nm well reminds one rather of a single well than of a double well since the energy difference 
between the bonding and the antibonding states is comparable with the difference between 
the energy of the first level and a bottom of the well. 

The electron charge density Ne(z) corresponds to well known behaviour of two coupled 
wells as described by a simple tight-binding model: there are two maxima of the density 
positioned symmetrically in each well, with the small but finite minimum at z = 0 for 
bonding states and N,(O) = 0 for antibonding states. Of course, the maxima are closer and 
bonding state charge densities higher in narrower double wells. 
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Figure 2. Wave functions and ‘electromagnetic’ band diagrams of a double-heremjunction well 
subject to in-plane magnetic fields. Pairs of curves characterize the electrons with a minimum 
(dashed) and a maximum (full) occupied lk,]. The widlh of the well is 40 nm. 

3.2. Magnetic-freld-dependent band structure 

As seen in figure 1, it is possible to approximate the form of barriers using an expression 
-mS22z2/2, where S2 is the fitting parameter. Assuming further that the barriers are not 
substantially changed by redistribution of electrons in the magnetic field, the potential energy 
in (1) is given by a combination of the fixed electric barrier and the attractive magnetic 
well with the curvature given by By.  The position of the minimum, ZO, which need not 
lie inside the interval -d /2 ,  +d/2,  is determined by k,. For small magnetic fields the 
potential energy inside the well is still a barrier with a smaller curvature m(u2 - n2) 
and a maximum at z = Z O W ~ / ( ~ ~  - a’). At a critical magnetic field, By = mQ/lel ,  
the bottom of the well becomes a linear function of z ,  with the slope dependent on k,. 
and at higher fields the sign of curvature of the potential energy line is reversed and a 
minimum appears at z instead of a maximum. The critical fields for the wells considered 
E a  = 4.7 T, B ~ o  = 5.6 T, Bm = 6.7 T and 825 = 9 T, are fully in the range of 
experimentally available values. This distinguishes the double-heterojunction structures 
from the standard double wells with steep AlGaAs barriers in which two deep minima are 
preserved for arbitrary magnetic fields. Consequently, the simple tight-binding picture of 
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eigenfunctions as symmetric/antisymmetc combinations of the eigenstates of individual 
wells is no longer appropriate. Above a critical field the lowest eigenstates always exhibit 
a single maximum and thus electrons are more localized by the magnetic field around its 
centroid then in the case of standard structures. Examples of eigenfunctions together with 
‘electromagnetic’ potential energy lines defined by equation ( I )  are presented in figure 2. 
The results are plotted for selected values of By and, to demonstrate their k,-dependence, 
also for a minimum and a maximum Ikzl corresponding to occupied states. 
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magnetic fields the energy of the maximum becomes greater than the Fermi energy and the 
spechum of occupied energies splits into two separated parts. This type of behaviour is 
general for energy spectra of all four well widths. In the narrowest well the splitting does 
not occur in the range of fields investigated. Examples of E&) curves for the well of 
medium width, d = 40 nm, and several selected values of By are presented in figure 3. 

The electrons with energies close to the Fermi energy EF are of particular interest since 
they play an essential role in the electronic transport properties of the system. The occupied 
and empty states are separated by the Fermi lines in k-space. In a zero magnetic field, the 
Fermi contours corresponding to symmetric and antisymmetric subbands take the form of 
two concentric circles. The larger circle describes the bonding and the smaller circle the 
antibonding states. The modification of the shape of E@,)-curves by the in-plane magnetic 
fields is reflected also in variation of the forms of the Fermi contours. They acquire ‘peanut’ 
and a ‘lens’ shapes when the sample is subjected to the intermediate magnetic fields. In 
the strong-field limit the ‘lens’ is emptied and the ‘peanut’ is split into two parts belonging 
to individual wells. This behaviour is illustrated in figure 4 for the same electron system 
and the same set of magnetic field values as in figure 3. The deviations from two crossing 
circles, corresponding to a pair of narrow independent wells, are so large that the shape of 
the Fermi lines can hardly be described by the above-mentioned simple model. 
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3.3. Cyclotron effective mass and real-space trajectories 

The separation of electron layers by the in-plane magnetic field may be clearly demonstrated 
if we consider the electronic structure of a system subjected to a tilted magnetic field with 
a strong component By, parallel to the GaAdAIGaAs interfaces, and a weak component BL 
oriented perpendicularly. To describe the system, the self-consistent quantum mechanical 
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calculation of the electron subbands in the presence of By, presented above, is combined 
with a quasi-classical description of the in-plane electron motion under the influence of Bz, 
as developed originally by Onsager [12] and Lifshitz [13]. 

The semiclassical theory predicts that an electron is drivcn by the Lorentz force due to 
BL around the Fermi contour with the cyclotron frequency U, = lelBJm,. The cyclotron 
effective mass m,, defined by the above equation, is an important characteristic of each 
Fermi line as a whole and should not be confused with the electron effective mass which 
is in our case a tensor and an anisotropic function of the position on the Fermi line. The 
explicit expression relating m, to the shape of the Fermi contour is 

L SmrEka and T Jungwirth 

h2 dk 
2;; #loxEl 

where dk denotes an element of a length of a Fermi line. In the case of two-dimensional 
electron systems a simple relation holds between the cyclotron effective mass and the density 
of states g corresponding to a single subband 

mc g=- 
nh2 ' 

Note that this is the cyclotron effective mass, and not the effective mass, which determines, 
for example, the temperature damping of Shubnikov-de Haas oscillations. 

Equations (7) and (8) can already both be found, at least in an implicit form, in [12] 
and [13]. Since they were obtained they have been utilized many times (for applications 
to ZD systems see, e.g., [4]), but they were overlooked in the recent publication by Harff 
et al [14]. Their detailed derivation and discussion for the case of combined parallel and 
perpendicular magnetic fields is presented in [lo]. 

Figure 5. Cyclotron effecuve masses of low wells as functions of an io-plane mametic field. 

The magnetic-field-dependent cyclotron effective masses resulting from our band- 
structure calculation are shown in figure 5 for all four wells. The logarithmic singularities 
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Figure 6. CenDoids of electron stntes of a double-heterojunction well, d = 40 nm, subject to 
in-plane magnetic fields. 
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Figure 7. Classically calculated mjectones of an electron in a double well subject to a tilted 
magnetic field. The upper curve (a) corresponds to 8, below the singularity and the lower curve 
(b) to By above this value. 
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of the cyclotron mass (density-of-states) curves corresponding to the lowest subbands occur 
at higher fields for narrower wells than for broader ones. The position of a singularity is 
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identical with the field value at which a ‘peanut’ becomes a pair of ‘kissing’ Fermi contours, 
i.e. when it is to split into two independent parts. Note that this is always above the fields 
Em = 4.7 T, Bso = 5.6 T and Ea = 6.7 T discussed above. The asymmetric shape of van 
Hove singularities somewhat deviates from the expression -InlEp(By) - Eo1 predicted by 
the analysis based on the quadratic approximation of the energy spechum near the saddle 
point. ?he reason for the slow increase of m, on the left of the singularity, and the rapid 
decrease on the right, may be due to the large influence of higher-order terms in the power 
expansion of E(k,). For the Fermi contours of the second subband the cyclotron mass 
always decreases for the given concentration of electrons. 

In the real space, electrons move along trajectories having the shape of Fermi contours 
but rotated by an angle k j 2  and multiplied by hjlelB,. A relation exists between the centre 
of mass (z) of an electron state in a well and the energy spectrum E(k,)  modified by the 
in-plane magnetic field, 

L SmrEka and T Jungwirth 

(9) 

Since (z) is a function of k,,  i.e. of the position of an electron on the Fermi contour, the 
real-space trajectory is slightly tilted with respect to the x-y-plane. Travelling around a 
‘peanut’ Fermi contour with the frequency oc, the electron is transmitted from one well to 
the other when the wavevector kx changes its sign. At k, = 0 the electron appears on the 
top of the barrier. The separation of a ‘peanut’ into two parts means that two independent 
real-space trajectories for electrons are formed, localized completely in opposite wells. In 
that case, the electron moving around a Fermi contour is always reflected by the barrier 
and remains confined in one of the wells. Hence, the electron system can be considered 
as divided into two disconnected layers. Self-consistently calculated examples of ( 2 )  as a 
function of k,  are presented in figure 6. 

The quasi-classical model of an electron motion in a double well can help to illustrate 
the origin of localization of electrons in individual wells due to the magnetic field. Figure 
7 shows real-space trajectories of an electron in a well with a parabolic barrier calculated 
classically for the case of two tilted magnetic fields with the same perpendicular component. 
For the field below the singularity, the trajectory overcomes the barrier and an electron 
spends the same time in both wells. Note that, in accordance with this statement, the left- 
hand part of the curve (a) lies above and the right-hand part below the projection of the 
trajectory to the x-y-plane ( z  = 0). The curve (b) is the electron trajectory calculated for 
the field above the singularity (the curves (a) and (b) are offset for clarity). In that case, 
an electron is kept in one well all the time. Just at the magnetic field where the singularity 
occurs, the electron stops at the top of the barrier and stays there infinitely. This means, in 
the terms utilized above, that its cyclotron frequency is zero and the cyclotron mass goes 
to infinity. 

hk, 1 aE(k,)  
mo hw ak, 

(2) = - - 

4. Conclusion 

We have performed self-consistent calculations on the electronic structure of symmetrically 
charged double-heterojunction wells in parallel magnetic fields. The properties are found to 
be to a large extent similar to those of standard double wells but, on the other hand, there 
are several differences that make the double heterojunctions attractive. 

In both types of structure an in-plane magnetic field substantially modifies the k,- 
dependence of the energy subbands. The following properties result from these field-induced 
changes. (i) Electrons are transferred from the antibonding to the bonding band when the 
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magnetic field increases. (ii) The Fermi contour topology changes-the originally circular 
lines acquire a ‘peanut’ and a ‘lens’ shapes and, at certain critical fields, the ‘lens’ is emptied 
(first criticalfield) and the ‘peanut’ splits into two independent lines (second criticalfield). 
(iii) The splitting of the ‘peanut’ Fermi contour is accompanied by the separation of an 
electron layer into two independent systems. (iv) At the second critical field the density 
of electron states and the cyclotron effective mass exhibit a logarithmic singularity when 
considered as functions of the in-plane field. 

The forming of a hard-wall barrier by the AlGaAs layer means that the coupling between 
electrons in a standard double well is always weak. Therefore, a simple tight-binding 
method for description of electron motion in the z-direction, resulting in a nearly-free 
electron model for its motion in the x-y-plane, can be successfully applied to describe the 
electronic structure. 

This is not true for double-heterojunction systems. Due to the charge present inside 
wells, a soft banier of approximately parabolic shape is built in each well, with the top at 
its centre. The height of the barrier is very small and the strength of coupling can be tuned 
over a large range by proper choice of the concentration of carriers and the width of the 
well. Under these circumstances, the simple model fails to describe the electronic spectra 
even in a qualitative way. Note that according to our calculations, the gap between two 
occupied subbands, for example, increases under the influence of the field, while the simple 
model yields a constant gap. 

The strong coupling between wells means that stronger magnetic fields are necessary to 
modify the electronic structure of a double heterojunction. The difference between the first 
and second critical fields can amount several tesla and, consequently, the changes of the 
cyclotron effective mass are also more robust and probably easier to detect experimentally. 

Nevertheless, the above-described differences between two types of structure are mainly 
quantitative. The qualitatively new features of double-heterojunction structures are the 
single-layerhilayer transition and the possible control of the interlayer separation using the 
in-plane magnetic field. These effects might be useful in studies of many-body effects in 
bilayer electron systems. 

Because of these properties the double-heterojunction structures represent a very 
attractive alternative to standard double wells. 
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